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HYPERGEOMETRIC FUNCTIONS AND ASSOCIATED
FAMILIES OF MEROMORPHICALLY STARLIKE AND
CONVEX FUNCTIONS
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ABSTRACT. For hypergeometric function 2Fi(r,s;t;z), conditions on
r, s and t are investigate so that o F' (7, s;t; z)/z is meromorphically star-
like and convex functions in the punctured disk. Further, integral oper-
ators related to the hypergeometric function are also examined.
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1. INTRODUCTION

Let ¥ denote the class of functions of the form
1 o0
1.1 = - nZ",
(1) )= + L

which are analytic in the punctured open unit disk Uy = {2 : 0 < |2| < 1}.
A function f € ¥ is said to be meromorphically starlike of order «, if it

satisfies )
zf'(z
—Re >a (0<a<l).
SRk :
A function f € ¥ is said to be meromorphically convex of order «, if it
satisfies #2)
zf"(z
—Re<1+ }>oz 0<ax<).
5 ( :

We denote by Y*(«) and X (a) the subclasses of ¥ consisting of all mero-
morphically starlike and convex functions of order «, respectively.
Let X, denote the subclass of ¥ consisting of functions of the form

(1.2) f(z) = % +3 ans (an > 0)
n=0

and let ¥5(a) = £*(a)NX,. Also let L7 denote the subclass of ¥ consisting
of functions of the form

(1.3) £(z) = % =S " (an > 0)
n=0

and let g r(a) = Eg(e) N . For various other interesting development
involving functions in the classes ¥5(a) and i (), the reader may be
referred (for example) to the works of Mogra et.al [5] and Uralegaddi and
Ganigi [9].
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The hypergeometric function o F} (r, s;t; z) is given as a power series, con-
verging in the open unit disk U = Up U {0}, in the following way:

oF1(2) = oF1(r,st;2) = Z(r S)" 2",

where r,s and ¢ are complex numbers Wlth t #0,—-1,-2,---, and (A\),
denotes the Pochhammer symbol (or the shifted factorial) defined, in terms
of the Gamma function I, by
I'(A+n)
Mn = —=77—
(A
B 1 if n =0 and X € C\{0}
Tl M+ (A+n-1) ifneN={1,2,---} and X € C.
We note that o Fy(r, s;¢; 1) converges for Re(t —r —s) > 0 and is represented
by
LTt —r—s)
Tt —r)T(t—s)
By using the hypergeometric function 2 F(z), we now introduce two mero-
morphic functions as follows:

(1.4) oFy(r, st 1) =

oo

_ (T‘ n+1(3)n+1 n
(1.5) L(z) = L(r,s;t;2) =~ +;}mz (z € Up).

and

(1L6)  I(z) = I(r,sitiz) =~ +Z Z’ ::(s B (2 € Uy

We note that
.foz 2 F1(t)dt
22 '

There are several results for oFy(z) in connection with various classes of
functions (see [1, 2, 4, 6, 7]). Particularly, Silverman [8] determined neces-
sary and sufficient conditions for z9F(z) to be in various subclasses of star-
like and convex functions. Also, Liu and Srivastava (3] investigated some
geometric properties for two novel families of meromorphically multivalent
functions involving a linear operator L(r, 1;¢; z).

In this paper, we will determine necessary and sufficient conditions for
L(z) and I(2) to be in the classes ¥y(a) and g 7(a) with appropriate
restrictions on r, s and t.

L(z) = F;( ?) and I(z) =

2. MAIN RESULTS

Lemma 2.1. A sufficient condition for the function f given by (1.1) to be
in X*(a) is that

[e e}
(2.1) Y (n+a)an| <1—0a, (1/2<a<1).

n=0
Further, a necessary and sufficient condition for the function f given by
(1.2) to be in X(«x) is that the condition (2.1) is satisfied.
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Proof. Suppose that the inequality Y ((n+ )|an| < 1—a holds. Then it
suffices to show that

2f'(2) 2f'(2)
f(2) f(2)
For 0 < |z| =7 < 1, (2.2) is equivalent to

H(f, ) = [2f'(2) + f(2)] = [2f'(2) + 20 = D f(2)]

oo oo

(2.2)

+1‘<

+2a — 1.

1
= Z(n + Dapz"| - 2(1 —a)- — Z(n +2a — 1)apz"|,

z

n=0 n=0

or
oo (e}
rH(f, f) = (n+ Dlan|r"™™ = 2(1 = a) + > (n + 20 — 1)]ay "™
n=0 n=0

2(n + a)|an|r" T = 2(1 — «).

I
NE

Il
=}

n

Since the above inequality holds for all » (0 < r < 1), letting r — 17, we
have

H(f, ) <Y 2(n+a)lan] —2(1—a) <0,
n=0
by (2.1). This completes the proof of the first part of Lemma 2.1. In order
to prove the second part of Lemma 2.1, we assume that f € Z;(a). Then,
from (2.2), we have

2f'(2) + f(2)
2f'(2) + (2a = 1) f(2)

Since Re(z) < |z| for all z,

S o(n+ 1apz"
20— 1)L+ ((n+2a — 1)ayz"

>oneo(n £ 1)anz" ) <1

2(1— )t =% (n+2a —1)a,z"

(2.3) Re
n=0

Choose the values of z on the real axis so that zf’(z)/f(z) is real. Upon

clearing the denominator in (2.3) and letting z — 1~ through positive values,

we obtain the condition (2.1). O

Lemma 2.2. A sufficient condition for the function f is given by (1.1) to
be in Lp(«) is that

[e.o]
(2.4) Zn(n+a)\an|§1—a 0<a<1l).

n=0
Further, a necessary and sufficient condition for the function f is given by
(2.4) to be in Xy () is that the condition (1.3) is satisfied.

Proof. Since the proof is similar to that of Lemma 2.1, we shall omit the
detailed proof. O

Theorem 2.1. If r,s > 0, then a necessary and sufficient condition for
L(z), given by (1.5), to be in ¥5(c) is thatt > rs/(1 —a) +r+ s+ 1.
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Proof. According to Lemma 2.1, we need to show that

- (M)n+1(8)n+1
(2.5) ;(n—l—a)m <l-«
Now
S (T)nt1(8)n _ S (r)nt1(8)n S (r)n($)n
2O Y+ Dy = 2 By T X G,
Noting that (A\)p+1 = A(A + 1), and then applying (1.4), we may express
(2.6) as

P (Pt Da(s+Dn (S (n(s)n
Pl ar D, ey <§<t>n<1)n 1)

Hence, (2.5) is equivalent to

s Tt —1r—s)
2.7 _— 1l =< +1-a<l—-0q.
27) (t—r—s—1+a )F(t—T)P(t—S)+ “= “
Thus, (2.7) is valid if and only if t > rs/(1 —a) + 7+ s+ 1. O

Theorem 2.2. Ifr,s > —1, t > r+s+2 and rs < 0. A necessary and
sufficient condition for L(z), given by (1.5), to be in Xy () is that

(2.8) w_(l_a) <;_i)§0.

(t—r—s5—2) t—r—s—1 s

Proof. Since

1 n
‘ ’Z (r+Dn(s+1) o,
(t+1),

n+1
according to Lemma 2.2, we must show that
[e.e]
(r4+1np(s+1),
nn+ao)——"————"—<|—|(1 — ).
2+ ) Dy = s )

n=0
Writing n(n +a) = (n+1)2 = (2 — a)(n + 1) + (1 — a), we see that

o0

Zn(n + a)—(r + Dn(s+ Dn

= (t+ Dn(Dntr

0
:(r+1)(s+1)z(7’+2)n(s+2)n (1- )Z(r+1)n(s+1)n

t+1 & ((+2aDn &+ Da(Dn
(1= a)t = (1)n(s)n
i 2 O,
T+ 1)t —r—s) (r+1)(s+1)
- T({t—r)I(t—s) <(trsl)(tr52)

-0 (o)) -
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The last expression is bounded above by [t/(7s)|(1 — «) if and only if (2.8)
holds. O

Theorem 2.3. Ifr,s >0 and t > r+ s+ 2, then a necessary and sufficient

condition for G(z) = 1(2 —3 Fi(z)) to be in Sy (o) is that
LTt —r—s) (r)2(s)2 TS

2. - 1) <2.

(29) Tt—r)Tt—s) \(I1—a)({t—r—s—2) t—r—s—1+

Proof. Since

_ 1 Z (M)n+1(8)n+1 o
(t)n-i-l 1)n+1 ’
from Lemma 2.2, it suffices to show that

§2M"+M%%§%%§Sl—w
Now, we have
é;Mn+®%%§%%§
::§;”Q%if%%fl— EI(T":ﬁiS+1+(1-aﬂ§;%gi§%%§%
_rr+ :)j(f +1) Z (r+ *2 2 (s + 2)n (1 —ta)rs nio (T(ji)n)(:(gi)n
e <;J (D 1;: )
O (e )

This last expression is bounded above by 1 — « if and only if (2.9) holds. O

Theorem 2.4. If r,s > 1 and t > r + s, then a necessary and sufficient

condition for 1(z), given by (1.6), to be in ¥y(«) is that

(2.10) LTt —r—s) (r—l)(s—1)+t—r—s 1
Tit—r)T(t—s) \(a—2)(t—1) t—1

Proof. In view of Lemma 2.1, we need only to show that

(o]

(M)nt1(8)nt1 —a
;(n - a) (t)n+1(1)n+2 =1
Now
- (T)n+1(s)n+1
;(n o) (t)nt+1(Dnt2

_ - (T)n+1(3)n+1 o — - (T)n+1(3)n+1
= Do T L e
DDt —r—s) (@=(t-r—9)\ (@=2(t—1)
‘ra—mnww)o+ r-1G-1) ) r—D(s—1)

+1—a.
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But this last expression is bounded above by 1 — « if and only if (2.10)
holds. ]

Theorem 2.5. Ifr,s > —1 withrs <0 (r#1ors#1) andt>r—+s+1,
then a necessary and sufficient condition for I1(z), given by (1.6), to be in
Yy r(a) is that

(2.11)
F(t—l—l)F(t—r—s)( 1 ~ (8-q) 2(2—&)(t—r—s)>
Tt —r)T(t—s) t—r—s—1 s (r—1)a(s — 1)

22— a)(t — 1)s
S (T — 1)2(5 — 1)2 )

Proof. Since
(r+1), n
I(z ’ ’ —z",
Z n n+2
by Lemma 2.2, it is sufficient to bhOW that

[e.9]

Zn(n+a)(r+l)n(s+1)n <

=0 T Dnns = |rs| 7@

rs

Now
o0

(r4+1Dnp(s+ 1),
;)”(” e <t ¥ 1>n<1>n+2

8+1 + Da(s +1)n
‘Z( ra) G ‘22( s
= Z w ~(3- a)i i (M)n+1(8)n+1

=t Da(bn = (Onr1(Dnsa

2(2 = a)(t —1)2 o~ (" = Dnya(s — Dy
o Dol Do 2 Dora s
T+t —7r—s) B-—a) 2Q2-a)(t—r—23)
T —r)I(t-s) (t—r—s—l TS (r—1)a(s—1)2 )
2(2—@)(1&—1 (1—a)t
(r—1)a(s—1)y s
But this last expression is bounded above by [t/(rs)|(1 — «) if and only if
(2.11) holds. O

Theorem 2.6. Ifr s>1andt>r+s+1, then a necessary and sufficient
condition for H(z) = [;(2 —2 Fi(2))dz/2? to be in Ty r(c) is that

()T(t—r—s) s 22—-a)(t—r—2s)
(2.12) Lt —7)C(t—s) (t—r—s—l (r—=1)(s—1) —3+a>
. < 2=t 1) +2(1 —«)
~ (r—1)(s—-1) )

Proof. The function H can be written by as

_ Z n+1(5 n+1 n

o () n+1(Dnt2
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According to Lemma 2.2, we will show that

[o.°]

ZWM)M <1-—a.
n—0 (t n+1 1 n+2

Now

(T)n+1(3)n+1
(O)n+1(D)nt2
Int

n aw_ n QM
() G D~ 2 X G

P (st Dy
T .. Tem9Y

2 =1 (= Daga(s — Do
PO CTHETT G DM

_ F(t)F(t—r—s)( st _2(a—2)(t—r—s)+a_3>

rt—rt—s) \t—r—s—1 (r=1)(s—1)
2(a—=2)(t—1)
(r—1)(s—1)
But this last expression is bounded above by 1 — « if and only if (2.12)
holds. ]

NE

n(n + «)

iMei
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Il
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